Efficient Neural Networks for Real-time Motion Style Transfer

Harrison Jesse Smith Ph.D. Candidate

Chen Cao Michael Neff Yingying Wang University of California, Davis

Snap, Inc. University of California, Davis Snap, Inc.

Motion Style

https://vimeo.com/26250920

https://tenor.com/view/walk-sad -depressed-lonely-alone-gif-5011387

https://ramminanimation.tumblr.com/post/ 136714032539/angry-walk-cycle

Goal

Style transfer that works:

Unlabeled, heterogeneous motion sequences

In real-time

With user control

In a computationally and memory efficient way

Existing Methods

Holden, Daniel, et al. "Fast neural style transfer for motion data." *IEEE computer graphics and applications* 37.4 (2017): 42-49.

Mason, Ian, et al. "Few-shot Learning of Homogeneous Human Locomotion Styles." *Computer Graphics Forum*. Vol. 37. No. 7. 2018.

Yumer, M. Ersin, and Niloy J. Mitra. "Spectral style transfer for human motion between independent actions." *ACM Transactions on Graphics (TOG)* 35.4 (2016): 137.

Xia, Shihong, et al. "Realtime style transfer for unlabeled heterogeneous human motion." *ACM Transactions on Graphics (TOG)* 34.4 (2015): 119.

Realtime Style Transfer for Unlabeled Heterogeneous Human Motion

Xia, Shihong, et al. "Realtime style transfer for unlabeled heterogeneous human motion." ACM Transactions on Graphics (TOG) 34.4 (2015): 119.

Overview

550,000 training samples

Input Pose Preprocessing

Input pose translated above origin

Rotated to face positive z axis

Concatenated with 5 previous poses, covering last 0.25 seconds

Gaussian normalization

Old Style Vector

Angry Style Vector

Strutting Style Vector

Output Pose

Networks and Training

Pose Network

128 units per layer Mean Squared Error loss

Timing Network

64 units per layer Mean Squared Error loss

Foot Contact Network

32 units per layer Binary Cross-Entropy loss

Optimizer: ADAM Learning rate: 0.01 Epochs: 20 Minibatch Size: 64

Implemented in Pytorch Training Time: 3 hours i7 3.5GHz 4-core with Geoforce GTX1070

3x

Predicting Input Poses

Results - Locomotion

Results -

Heterogeneous Motion

Results -Comparison with Original

Run-time Performance

	Memory	FPS	
	Footprint	Achieved	
[Xia et al. 2015]	290 MB	55*	*CUDA + GPU
[Yumer and Mitra 2016]	Not Reported	50	
Our Method (PC)	931 KB	115	i7 3.5GHz CPU

	Memory	Memory Neural Network	
	Footprint	Forward Pass	
Our Method (PC)	931 KB	0.0008s	i7 3.5GHz CPU
Our Method (Mobile)	931 KB	0.002s	iPhone 7 Plus
[Holden et al. 2017b] Cubic	10MB	0.0018s	
[Holden et al. 2017b] Constant	125MB	0.0008s	
[Mason et al. 2018]	126KB*	0.0011s	
[Zhang et al. 2018]	22MB	0.002s]

Interpolation and Extrapolation Example: Childlike

Strutting Interpolation

Strutting Interpolation

Blending Childlike to Old

Blending From Childlike to Old

Combining Old and Strutting

User Study: Style Recognition

Ours

Xia's

User Study: Exaggeration

"Which Video is More Expressive of an 'Old' Style?"

User Study: Extrapolation

Style	Ours	Xia's	Don't Know
Angry	27 (63%)	15 (34%)	1 (3%)
Childlike	33 (77%)	6 (14%)	4 (9%)
Depressed	31 (72%)	12 (28%)	0
Old	37 (86%)	6 (14%)	0
Proud	3 (7%)	40 (93%)	0
Sexy	17 (39%)	25 (58%)	1 (3%)
Strutting	27 (63%)	15 (34%)	1 (3%)

In Summary

A method for style transfer that works:

Unlabeled, heterogeneous motion sequences

In real-time

In a computationally and memory efficient way

With user control

Questions?

Efficient Neural Networks for Real-time Motion Style Transfer

Harrison Jesse Smith Ph.D. Candidate

Chen Cao Michael Neff Yingying Wang University of California, Davis

Snap, Inc. University of California, Davis Snap, Inc.