
TCS170D: Web Design

Creating a Page Layout and Horizontal Navigation

CSS: Background

▪ We’ve already added background colors using background-color

▪ We can also add a background image:

▪ Note that the path inside url() is relative to the location of the rule! If
this CSS is in an external style sheet, adjust the path accordingly

Background image positioning

▪ Background-repeat
– https://www.w3.org/wiki/CSS/Properties/background-repeat

▪ Background-position
– https://www.w3.org/wiki/CSS/Properties/background-position

▪ Background-size
– http://www.w3schools.com/cssref/css3_pr_background-size.asp

https://www.w3.org/wiki/CSS/Properties/background-repeat
https://www.w3.org/wiki/CSS/Properties/background-position
http://www.w3schools.com/cssref/css3_pr_background-size.asp

Color
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value

▪ Several different ways to represent a color value:
– Keywords {color:red}

– RGB: {color:rgb(255, 0, 0)

– Hex Values: #FF0000

– Shorthand hex values: #F00

– RGBA: {color:rgb(255, 0, 0, .5)}

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value

Box Property Methods

▪ Min-height:
– https://www.w3.org/wiki/CSS/Properties/min-height

▪ Calc(), for combining %s and pixels:
– https://developer.mozilla.org/en-US/docs/Web/CSS/calc

https://www.w3.org/wiki/CSS/Properties/min-height
https://developer.mozilla.org/en-US/docs/Web/CSS/calc

Advanced Selectors

▪ *, for universal selector
– https://www.w3.org/TR/css3-selectors/#universal-selector

▪ User action pseudo classes:
– https://www.w3.org/TR/css3-selectors/#the-user-action-pseudo-classes-hover-act

https://www.w3.org/TR/css3-selectors/#universal-selector
https://www.w3.org/TR/css3-selectors/#the-user-action-pseudo-classes-hover-act

Media Types & Queries

▪ Media Types:

▪ Media Queries:
– Allow you to apply CSS rules based on browser factors, like screen width

▪ http://www.w3schools.com/cssref/css3_pr_mediaquery.asp

http://www.w3schools.com/cssref/css3_pr_mediaquery.asp

Element Positioning

▪ Defines where an element is displayed on screen. 3 types:
– Normal flow

– Element floating

– Absolute positioning

Normal Flow

▪ What we’ve seen so far.
– Block element stack one on top of another.

– Inline elements go left to right

Position

▪ Static doesn’t change anything

▪ Relative: offsets the element from its top left corner
– Use in conjunction with left and top rules

▪ Fixed: Element is removed from normal flow. Position is always the
same, even when you scroll in the browser

Element Positioning

▪ Defines where an element is displayed on screen. 3 types:
– Normal flow

– Element floating

– Absolute positioning

Normal Flow

▪ What we’ve seen so far.
– Block element stack one on top of another.

– Inline elements go left to right

Position

▪ Static doesn’t change anything

▪ Relative: offsets the element from its top left corner
– Use in conjunction with left and top rules

▪ Fixed: Element is removed from normal flow. Position is always the
same, even when you scroll in the browser

Float

▪ http://www.w3schools.com/cssref/pr_class_float.asp

▪ Element shift to the right or left of current position.

▪ Remove document from normal document flow.

▪ Other elements will move up under it unless you clear the float:

▪ http://www.w3schools.com/cssref/pr_class_clear.asp

http://www.w3schools.com/cssref/pr_class_float.asp
http://www.w3schools.com/cssref/pr_class_clear.asp

LESS- Why would we want to use it?

▪ CSS is handy, but it isn’t very flexible.
– Few mathematical function

– No variables

– Lots of repetition

LESS is a language that compiles down to
CSS

▪ We write LESS, put it into a LESS compiler, and CSS comes out. Then
we use that CSS in our site.

▪ Suppose we had a blue color theme on our site, and we wanted to
make it green. We would need to manually change every value in our
CSS. Very tedious and error prone.

▪ With LESS, we can put the base color in a variable in our code, and
calculate the other colors automatically. Only one place to update
code.

Online LESS Compiler

▪ http://winless.org/online-less-compiler

▪ You can manually put in LESS code, and get CSS out directly.

▪ Good for learning purposes, but this would be done automatically by
a server in a production website.

http://winless.org/online-less-compiler

Bootstrap

▪ When writing CSS for different website, you do the same things over
and over again.

▪ CSS Frameworks, like Boostrap, do these basic things for you.

CSS Framework Pros

▪ Saves times when designing sites.

▪ Takes care of cross-browser compliancy for you.

▪ Grids are really, really convenient.

CSS Framework Cons

▪ Lots of features you won’t use

▪ Multiple external CSS files

▪ Lots and lots of classes.

▪ Hard to update and customize

▪ Hard to learn (but worthwhile)

Bootstrap

▪ Lots and lots of features. This is only a very, very small introduction.

▪ http://getbootstrap.com/

▪ Can download the CSS for bootstrap directly, or can use a Content
Delivery Network (CDN) to download CSS and Javascript.

▪ Requires jQuery, which can also be downloaded from a CDN

http://getbootstrap.com/

Boostrap Grids

▪ 12-column grid, accessed through CSS classes

▪ Three key concepts:
– Containers – used for containing rows: <div class=“container” >

– Rows – goes inside of containers <div class=“row” >

– Columns- 12 columns per row <div class=“col-12” >

Column class names are “col-<size>-”

Span is the number of columns in the row

Size is the browser width breakpoints at which the columns will change their
display:

<div class=“col-sm-12” >

